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SUMMARY

Throughout the developing nervous system, neural stem and progenitor cells give rise to diverse 

classes of neurons and glia in a spatially and temporally coordinated manner. In the ventral spinal 

cord, much of this diversity emerges through the morphogen actions of Sonic hedgehog (Shh). 

Interpretation of the Shh gradient depends on both the amount of ligand and duration of exposure, 

but the mechanisms permitting prolonged responses to Shh are not well understood. We 

demonstrate that Notch signaling plays an essential role in this process, enabling neural 

progenitors to attain sufficiently high levels of Shh pathway activity needed to direct the ventral-

most cell fates. Notch activity regulates subcellular localization of the Shh receptor Patched1, 

gating the translocation of the key effector Smoothened to primary cilia and its downstream 

signaling activities. These data reveal an unexpected role for Notch shaping the interpretation of 

the Shh morphogen gradient and influencing cell fate determination.
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INTRODUCTION

Neuronal and glial diversity in the central nervous system emerges in large part through the 

concomitant and combinatorial actions of morphogen signals such as Sonic hedgehog (Shh), 

Bone Morphogenetic Proteins (BMPs), Wnts, and retinoids that organize neural progenitor 

cells (NPCs) into discrete domains along the dorsoventral and rostrocaudal axes (Briscoe 

and Novitch, 2008; Le Dreau and Marti, 2013; Butler and Bronner, 2015). Each of these 

domains is defined by their expression of unique combinations of transcription factors and 

ability to generate specific classes of neurons and glia (Briscoe and Novitch, 2008; Rowitch 

and Kriegstein, 2010; Le Dreau and Marti, 2013; Butler and Bronner, 2015). The prevailing 

model for morphogen signaling posits that differential cellular responses arise due to the 

signal concentrations that cells encounter (Rogers and Schier, 2011); yet, the duration of 

exposure to a fixed amount of signal can also elicit graded domain responses and influence 

fate decisions (Kutejova et al., 2009). These results suggest that an important aspect of 

morphogen interpretation is the ability of cells to maintain their responsiveness to these cues 

as development proceeds. However, the mechanisms that permit this competence over time 

are not well understood.

One of the best-studied examples of morphogen signaling is the patterning response of 

NPCs in the ventral spinal cord to Shh. Shh acts on NPCs in a dose-dependent manner, 

binding to its primary receptors Patched1 and 2 (Ptch1/2) to initiate a cascade of 

intracellular signaling events centered on the translocation of the G protein-coupled receptor 

Smoothened (Smo) to primary cilia (Eggenschwiler and Anderson, 2007; Dessaud et al., 

2008; Ribes and Briscoe, 2009). The presence of Smo in cilia modulates the proteolysis and 

activity of the Gli family of Zn-finger transcription factors, which in turn regulate the 

expression of many NPC fate determinants that subdivide the ventral spinal cord into three 

distinct ventral NPC domains: p3, pMN, and p2 (Briscoe and Novitch, 2008; Dessaud et al., 

2008; Ribes and Briscoe, 2009). These domains are distinguished by their shared expression 

of the transcription factor Nkx6.1 and differential expression of Nkx2.2, Olig2, and Irx3, 

respectively (Mizuguchi et al., 2001; Novitch et al., 2001; Briscoe and Novitch, 2008; 

Dessaud et al., 2008). The pMN gives rise to motor neurons (MNs) while the p3 and p2 

domains produce distinct classes of spinal interneurons that modulate MN activities. Later in 

development, Olig2+ NPCs generate oligodendrocyte precursors (pOL) that migrate 

throughout the spinal cord before differentiating into myelinating oligodendrocytes 

(Rowitch and Kriegstein, 2010). The p3 and p2 domains similarly transform into astroglial 

progenitors (pVA3 and pVA2) producing astrocytes that colonize distinct regions of the 

ventral spinal cord (Muroyama et al., 2005; Hochstim et al., 2008).

While these fates can be specified through the administration of different concentrations of 

Shh ligand in vitro (Dessaud et al., 2008; Ribes and Briscoe, 2009), NPCs also acquire their 

ventral identities through time-dependent mechanisms. NPCs treated with moderate doses of 

Shh initially express the pMN determinant Olig2; however, if Shh/Gli signaling is sustained, 

they subsequently express Nkx2.2 and adopt the more ventral p3 fate (Dessaud et al., 2007; 

Dessaud et al., 2010; Balaskas et al., 2012). Recent studies in the zebrafish spinal cord have 

further demonstrated that progenitor maintenance mediated by the Notch signaling pathway 

plays an important role enabling later born Shh-induced cell types to emerge (Huang et al., 
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2012). Together, these findings indicate that cells must remain in an undifferentiated state to 

properly interpret the Shh morphogen gradient, but do not resolve the mechanism by which 

the maintenance of NPC characteristics influences Shh responsiveness, and whether 

retaining cells in a progenitor state influences spatial patterning.

The Notch signaling pathway serves as a major regulator of NPC maintenance and both 

neuronal and glial development (Gaiano and Fishell, 2002; Pierfelice et al., 2011). Notch 

receptors are broadly expressed by NPCs and activated by the Delta-like and Jagged families 

of transmembrane ligands presented by neighboring cells (Kageyama et al., 2009; Pierfelice 

et al., 2011). Activated Notch receptors are cleaved by the Presenilin γ-secretase complex, 

liberating Notch intracellular domain (NICD) fragments. NICD subsequently forms 

transcriptional activating complexes with the DNA binding protein Rbpj and members of the 

mastermind-like (MAML) coactivator family (Kageyama et al., 2009; Pierfelice et al., 

2011). Rbpj-NICD-MAML complexes regulate a number of targets most notably Hes genes, 

bHLH transcription factors that repress proneural genes, inhibit neuronal differentiation, and 

promote NPC maintenance (Kageyama et al., 2007; Kageyama et al., 2009; Pierfelice et al., 

2011). Through these actions, Notch signaling suppresses neuronal differentiation and 

endows cells with gliogenic potential. NICD misexpression can further promote specific 

glial cell fates, such as radial glia in the forebrain, Müller glia in the retina, and astrocytes in 

neural stem cell cultures (Furukawa et al., 2000; Gaiano et al., 2000; Scheer et al., 2001; Ge 

et al., 2002) while inhibiting oligodendrocyte differentiation (Wang et al., 1998). These data 

implicate a role for Notch in glial fate selection, though the mechanisms underlying these 

effects remain unclear.

Here, we test the contributions of Notch signaling on both the establishment of NPC 

identities and glial fate determination. We show that activation and inactivation of the Notch 

pathway modify the responses of NPCs to Shh, altering both their dorsoventral register and 

ability to generate distinct classes of neurons and glial cells. Notch activity strikingly acts at 

the most proximal steps in the Shh transduction pathway, affecting the trafficking of Smo 

and Ptch1 to primary cilia. Together, these findings reveal a novel role for Notch signaling 

shaping the interpretation of the Shh morphogen gradient and assignment of cell fates.

RESULTS

Manipulation of Notch signaling alters the dorsoventral register of NPCs

We first used Olig2Cre mice (Dessaud et al., 2007) to selectively activate or inactive Notch 

signaling in the p3 and pMN domains between embryonic day (E) 9.5-10.5 (Figures S1A-

S1W). This strategy was accomplished by crossing Olig2Cre to mice harboring: 1) a Cre-

inducible R26RGFP transgenic reporter (Mao et al., 2001) (control condition), 2) a 

R26RNICD-GFP transgene and reporter (Murtaugh et al., 2003) (“Notch-On” condition), or 3) 

a Cre-inactivatable Rbpj allele (Han et al., 2002) along with the R26RGFP transgenic 

reporter (“Notch-Off” condition) (Figures 1A). The impact of these Notch pathway 

manipulations was evident by E11.5, as Notch-On mice displayed elevated expression of the 

Notch effectors Hes1 and Hes5, which are normally very low in the pMN, and reduced 

expression of proneural transcription factors including Neurog2, Ascl1, and Neurog3 

(Figures S2A-S2N). Conversely, Notch-Off mice displayed reductions in Hes1 and Hes5 
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expression, and increased levels of Neurog2, Ascl1, and Neurog3 (Figures S2O-S2U). While 

the ventral ventricular zone (VZ) narrowed in Notch-Off mice, a contiguous band of Sox2+ 

NPCs was maintained throughout development, and both the neuroepithelial architecture 

and apicobasal polarity of progenitors were preserved (Figures S2V-S2AI). This phenotype 

contrasts with mutations in other members of the Notch pathway such as Hes1 and Hes5 

whose combined loss disrupts the neuroepithelium (Hatakeyama et al., 2004). The 

persistence of NPCs and neuroepithelial organization in Olig2Cre; Notch-Off mutants may 

be explained by the lasting presence of Hes1 in ventral progenitors despite the loss of Rbpj 

(Figure S2Q-S2R), most likely due to Notch-independent activation of Hes1 by Shh, as has 

been described in other tissues (Ingram et al., 2008; Wall et al., 2009).

We next examined the impact of these Notch manipulations on dorsoventral patterning. 

Remarkably, activating Notch signaling led to a notable reduction in Olig2+ pMN cells by 

~E11.5 and a nearly complete loss of Olig2+ NPCs throughout the rest of embryonic 

development (Figures 1B-1K and 1Q). Notch-Off mice exhibited the reciprocal phenotype, 

with a ~1.5 to ~2.5-fold increase in the number of Olig2+ progenitors from E11.5 to 

postnatal day (P) 0.5 (Figures 1L-1P, and 1Q). While Olig2+ cells were reduced in Notch-

On mice, the overall number of ventral NPCs expressing Nkx6.1 increased by ~50% (Figure 

2M). The loss of Olig2 from Nkx6.1+ NPCs coincided with the increased expression of the 

p3 determinant Nkx2.2 (Figures 2A-2H and 2N). Given that Nkx2.2 can repress Olig2 

(Mizuguchi et al., 2001; Novitch et al., 2001; Sun et al., 2003), the loss of pMN cells in 

Notch-On mice is likely due to their transformation towards the more ventral p3 fate. This 

conclusion was supported by the reduced percentage of Nkx6.1+ progenitors expressing 

Nkx2.2 and corresponding increase in Olig2+ cells seen in Notch-Off spinal cords (Figures 

2I-2L and 2N). Collectively, these data demonstrate that Notch signaling plays a critical role 

enhancing the ventral character of NPCs and influencing their partitioning between pMN 

and p3 identities.

Notch-mediated changes in ventral NPCs alter neuronal and glial fates

We next used R26RGFP lineage tracing to assess the fate of the Notch-manipulated cells. 

Consistent with the loss of Olig2, Notch-On spinal cords exhibited a ~35% reduction in MN 

formation (Figures S3A-S3F and S3J-S3L). Most of this deficit resulted from the selective 

loss of Foxp1+ lateral motor column (LMC) MNs at limb levels and preganglionic column 

(PGC) MNs at thoracic levels, with little change to Foxp1− medial and hypaxial motor 

column (MMC and HMC) MNs (Figure S3K) (Rousso et al., 2008). LMC and PGC MNs 

are amongst the last MN subtypes to be formed (Tsuchida et al., 1994), suggesting that 

Notch activity must be silenced for the generation of these later-born cell types. 

Nevertheless, Notch-Off spinal cords did not exhibit any obvious defects in either MN 

formation or segregation into different columnar subgroups (Figures S3G-S3L).

Olig2Cre-mediated Notch manipulations produced much more striking changes in glial fate 

selection. In E18.5 control embryos, Olig2Cre derivatives include both Sox10+ Pdgfrα+ 

oligodendrocyte progenitors scattered throughout the spinal cord and BLBP+ Nf1A+ 

Nkx6.1+ Fgfr3+ Slit1+ VA3 astrocyte precursors and differentiated astrocytes located in the 

ventral-most white matter (Figures 3 and S3M-S3U) (Hochstim et al., 2008). Notch-On 
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spinal cords exhibited a nearly complete loss of oligodendrocyte precursors and 

corresponding increase in VA3-like astrocyte precursors (Figures 3A-3H, 3M-3O and S3M-

S3R) (Hochstim et al., 2008). Conversely, Notch-Off spinal cords produced more 

oligodendrocyte precursors and fewer astrocyte precursors and differentiated VA3 astrocytes 

(Figures 3I-3O and S3S-S3U). Together, these data show that early changes in NPC fates 

following Notch pathway manipulation lead to corresponding alterations in neuronal and, 

more strikingly, glial identities.

Notch signaling is only able to shift NPC identities within the ventral spinal cord

Previous studies observed that glial fates could be altered by deleting Rbpj function from all 

spinal NPCs (Taylor et al., 2007), raising the question of whether our results stemmed from 

direct effects of Notch activity on glial fate selection or were a secondary consequence of 

altered dorsoventral patterning. To distinguish between these possibilities we examined the 

consequences of manipulating Notch activity in the p0 domain of the intermediate spinal 

cord using a Dbx1Cre driver (Bielle et al., 2005; Dessaud et al., 2010). Dbx1Cre-mediated 

Notch activation expanded the numbers of Dbx1+ and Dbx2+ progenitors (Figures S4A-

S4D’ and S4G), while Notch inactivation disrupted neuroepithelial organization and 

depleted these cells (Figures S4E-S4S). Despite these effects, we observed no changes in the 

dorsoventral register of NPCs or shifts in glial identities as seen with Olig2Cre-based 

manipulations (Figures S4T-S4AI). Thus, while manipulation of the Notch pathway can 

change the balance between NPC maintenance and differentiation within the intermediate 

spinal cord, it appears insufficient to evoke changes in dorsoventral patterning and 

associated neuronal and glial fates.

Notch signaling alters ventral progenitor identities by modulating responses to Shh

The selective effects of Notch activity on cell fate assignment in the ventral versus 

intermediate spinal cord suggests that Notch modulates the responsiveness of NPCs to Shh 

ligand produced at the ventral midline. To test this possibility, we used the classic chick 

intermediate [i] neural plate explant system to examine the fates of NPCs exposed to 

moderate (1 nM) or high (4 nM) amounts of Shh and varying amounts of the γ-secretase 

inhibitor DAPT (N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester) to 

reduce Notch receptor cleavage and downstream signaling (Dovey et al., 2001; Geling et al., 

2002; Dessaud et al., 2007). High amounts of Shh produced numerous Nkx2.2+ p3 cells and 

a small number of Olig2+ pMN cells (Figure 4D) as previously described (Dessaud et al., 

2007). However, when Notch activity was reduced using DAPT, the number of Nkx2.2+ 

progenitors was reduced while Olig2+ cells increased (Figure 4E-4F), recapitulating the 

phenotype seen in Notch-Off mice (Figures 2I-2J and 2N). Interestingly, the effects of 

DAPT up to 25 μM appeared selective: they blunted the Nkx2.2-inducing activity of high 

doses of Shh but did not block the Olig2-inducing activity of lower doses of Shh (Figures 

4A-4C). These results suggest Notch is required for NPCs to experience high but not low 

levels of Shh signaling.

To verify that these NPC identity shifts were due to effects of Notch on Shh pathway 

activity, [i] explants were isolated from chick embryos electroporated with a Gli binding 

site-Luciferase (GBS-Luciferase) reporter to measure Gli function after Shh administration 
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(Stamataki et al., 2005; Dessaud et al., 2007). DAPT addition led to a >50% decrease in 

GBS-Luciferase activity over that seen with Shh alone (Figure 4G). Similar results were 

obtained with measurement of GBS-Luciferase activity in ventral neural plate plus floor 

plate [vf] explants, in which Gli activity is driven by the endogenous Shh produced by floor 

plate cells (Figure 4H). Collectively, these data demonstrate that Notch signaling is required 

for NPCs to attain the highest levels of Gli activity and assume the ventral-most fates.

Notch signaling facilitates the accumulation of Smo within primary cilia

We next sought to determine a mechanism that could explain the modulatory effects of 

Notch signaling on Shh responsiveness. Given that the requirement of Notch for Shh 

responses appears to be conserved in NPCs across species, we tested whether it was also 

conserved across cell types. NIH-3T3 mouse fibroblasts are a cell line shown to be Notch 

responsive (Small et al., 2003) and in which the cellular and molecular details of Shh 

signaling are well established (Taipale et al., 2000; Rohatgi et al., 2007; Tukachinsky et al., 

2010). We first validated the system by exposing Shh-Light2 cells, a NIH-3T3 derivative 

stably transfected with a GBS-Luciferase reporter, to increasing concentrations of Shh and 

observed dose-dependent increases in Luciferase activity (Figure 5A). Strikingly, the 

addition of DAPT to these cultures reduced Shh-induced GBS-Luciferase activity (Figure 

5B), recapitulating the effects seen with neural plate explants (Figures 4D-4H). Quantitative 

polymerase chain reaction (qPCR) analysis showed that DAPT similarly impacted 

endogenous Shh response genes such as Gli1 and Ptch1 (Figure 5C).

We then used the NIH-3T3 fibroblast system to pinpoint where Notch activity acts in the 

Shh transduction cascade. One of the first steps is the translocation of Smo to primary cilia, 

which initiates the conversion of Gli proteins into transcriptional activators (Corbit et al., 

2005; Rohatgi et al., 2007). DAPT dramatically reduced Shh-induced Smo accumulation 

within primary cilia, acting in a dose-dependent manner (Figures 5D-5F, 5I-5K, and S5A). 

This change occurred without any obvious impact on Smo mRNA, alterations in cell 

polarity, or presence of primary cilia, though DAPT addition alone reduced average cilia 

length by 12.6% ± 1.3%; p < 0.001 (Figures 5C and S5B-S5I). To confirm that reductions in 

ciliary Smo were due to changes in Notch pathway activity, we repeated these experiments 

using two additional small molecule inhibitors: SAHM1, a peptide that prevents assembly of 

the NICD-Rbpj-MAML1 transcriptional activator complex (Moellering et al., 2009) and 

JLK6 (7-Amino-4-chloro-3-methoxyisocoumarin; also referred to as γ-secretase inhibitor 

XI), a molecule that blocks activation of some γ-secretase targets such as beta-amyloid 

precursor proteins while sparing others, including the Notch receptors (Petit et al., 2001). 

Verifying these activities, we found that both DAPT and SAHM1 reduced Hes1 gene 

expression in NIH-3T3 cells by ~65-75%, whereas JLK6 had no discernible effect (Figure 

5I). Importantly, SAHM1 reduced Shh-induced ciliary accumulation of Smo in a manner 

similar to DAPT (Figure 5G and 5J). JLK6 in contrast had no effect on Smo localization 

(Figure 5H and 5K).

We further tested whether the impact of Notch activity on Shh-induced Smo localization 

was limited to NIH-3T3 cells or more broadly applicable to other cell types including human 

NPCs, primary mouse embryonic fibroblasts (MEFs), and C2C12 mouse myoblasts. In all 
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cases, DAPT reduced Shh-induced Smo accumulation within primary cilia (Figures S6A-

S6M), suggesting that the crosstalk between the Notch and Shh pathways is conserved 

across germ layers and species.

Since Notch inhibition reduced both the presence of Smo within primary cilia and Shh 

pathway activity, we tested whether the converse was also true. NIH-3T3 cells were 

transiently transfected with a vector expressing NICD and an IRES-nEGFP reporter cassette 

to activate Notch signaling, and both Smo localization and the expression of Shh-target 

genes evaluated. NICD-transfected cells exhibited a ~40 fold increase in Hes1 expression 

irrespective of Shh stimulation (Figure 5L). Primary cilia were also slightly longer (17.5% ± 

3.9%, p < 0.001) in NICD-transfected cells compared to nEGFP-only transfection controls, 

consistent with the reduced cilia lengths seen with DAPT addition. Upon Shh treatment, 

NICD-transfected cells exhibited an increase in the level of Smo within primary cilia and ~2 

to 3-fold higher levels of Gli1 expression (Figures 5M and 5N). These effects were only 

seen after the addition of Shh. Together, these results illustrate that Notch activity is not only 

required for Shh responsiveness, but can also potentiate its signaling function.

Given that Hes1 was notably changed in all of our Notch manipulations, we tested whether 

direct elevation of Hes1 could similarly increase cellular responses to Shh ligand. 

Interestingly, Hes1 misexpression was sufficient to increase Shh-evoked activation of Gli1 

~1.8-fold (Figures S5J-S5K). Collectively, these results suggest that the potentiating effects 

of Notch on Shh signaling result from activation of Hes genes and likely other downstream 

effectors.

Given the ability of Notch signaling to promote localization of Smo to cilia in cultured cells, 

we examined whether this effect could also be seen in the developing spinal cord. In E10.5 

control embryos, high amounts of Smo were present in the cilia of both floor plate and 

Nkx2.2+ p3 cells and lower levels present in Olig2+ pMN cells (Figures 6A-6B”). In Notch-

Off spinal cords, most Olig2Cre-derived NPCs exhibited lower levels of ciliary Smo, and 

this change preceded shifts in Olig2 and Nkx2.2 expression (Figures 6C-6D” and 6K). By 

E11.5, the extent of Smo localization within cilia along the dorsoventral axis of Notch-Off 

mutants was reduced by ~60% compared to littermate controls (Figures 6E-6F’ and 6I-6L). 

Notch-On mutants by contrast showed a dorsal expansion in the extent of Smo localization 

within primary cilia (Figures 6G-6H’ and 6L).

Changes in the ciliary accumulation of Smo following Notch manipulations could stem from 

either direct effects of Notch on Smo trafficking or indirect effects related to Notch having 

altered NPC identities. To distinguish between these possibilities, we examined Smo 

staining in the spinal cords of Nkx2.2, Olig2, and Pax6 mutant mice, where dorsoventral 

patterning is known to be severely disrupted (Dessaud et al., 2008). Remarkably, the dorsal 

limits of ciliary Smo in all mutants were similar to control littermates, despite clear changes 

in NPC fates (Figures S7A-S7R). In Nkx2.2 mutants, this alteration permitted the unusual 

presence of Olig2 in cells exhibiting high amounts of Smo in their cilia (Figures S7J and 

S7N), a phenotype that was never seen in control embryos or those in which Notch activity 

had been manipulated (Figures 6E-6L). Collectively, these data show that Notch activity 

influences Smo accumulation within primary cilia in multiple cell types in vitro and spinal 
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cord NPCs in vivo, and acts upstream of the transcription factor network controlling 

dorsoventral fates.

Notch activity sets the levels of Ptch1 present in primary cilia, thereby gating Smo entry

We next considered the mechanism by which Notch might impact Smo localization. Our 

observations that Notch activation only promoted the accumulation of Smo within cilia 

following Shh addition suggested that it most likely acts upstream of Smo in the Shh 

transduction cascade. Consistent with this model, we found that DAPT was unable to block 

Smo accumulation when cells were treated with either Purmorphamine (Pur) or Smoothened 

Agonist (SAG), small molecules that directly stimulate Smo activity in a Shh ligand-

independent manner (Chen et al., 2002; Sinha and Chen, 2006) (Figures 7A-7E). We thus 

focused our attention on the actions of Notch on the Shh receptor Ptch1. In the absence of 

ligand, Ptch1 localizes around the base and within primary cilia, where it inhibits Smo entry 

and Gli activation (Rohatgi et al., 2007). Shh binding to Ptch1 promotes its exit from 

primary cilia and concomitant Smo accumulation (Rohatgi et al., 2007). Since endogenous 

Ptch1 protein was difficult to detect in NIH-3T3 cells by antibody staining, we utilized 

Ptch1-YFP MEFs generated by infection of Ptch1LacZ/LacZ mutant cells with a retrovirus 

expressing a Ptch1-YFP fusion protein (Rohatgi et al., 2007). In the absence of Shh, ~75% 

of primary cilia contained Ptch1 (Figures 7F and 7J). When DAPT was added for 12 hr, the 

number of Ptch1+ primary cilia increased to ~90% (Figures 7G and 7J). This ~15% 

elevation is notable in that its magnitude is consistent with the ~15-20% decrease in Smo+ 

cilia upon Shh and DAPT coadministration (Figures 5J-5K). DAPT was also able to impede 

the clearance of Ptch1 from primary cilia upon Shh stimulation (Figure 7H-7J). Remarkably, 

the effects of DAPT on Ptch1 localization occurred without any change in either Ptch1 

mRNA or protein levels in both Ptch1-YFP MEFs and NIH-3T3 cells (Figures S8G-S8I).

These results prompted us to examine whether the effects of DAPT on Smo trafficking to 

primary cilia occurs immediately after its addition, or rather requires more time to enable 

Ptch1 to increase and thereby block Smo entry. Smo normally accumulates in primary cilia 

within 4 hr of Shh addition (Rohatgi et al., 2007) (Figures S8A-S8B). When Shh and DAPT 

were coadministered, there was no decrease in Smo presence within primary cilia at either 

the 4 or 6 hr time points; rather, Smo reduction only became evident after ~12 hr (Figures 

S8A-S8B). In contrast, when cells were pre-treated with DAPT for 8 hr and then exposed to 

Shh plus DAPT for an additional 4 hr, significant reductions in Smo ciliary accumulation 

were observed (Figures S8C-S8D). These data indicate that the suppressive actions of DAPT 

on Smo localization follow the time course of Ptch1 accumulation within primary cilia. We 

further found that the actions of DAPT required new transcription, as changes in Smo 

localization were partially blocked by coadministration of DAPT and the RNA polymerase 

inhibitor α-amanitin (Figures S8E-S8F). These results suggest that Notch modulates Ptch1 

and Smo levels in and around primary cilia through a transcriptional mechanism.

To test whether Ptch1 mediates the inhibitory effects of DAPT on Smo, we measured the 

impact of DAPT addition to Ptch1LacZ/LacZ mutant MEFs. Whereas DAPT potently 

inhibited Smo accumulation in the cilia of Shh-treated control MEFs, it was unable to do so 
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in Ptch1 null cells (Figures 7K-7O and S8J). Collectively, these data show that Notch 

signaling influences Smo accumulation by regulating the ciliary presence of Ptch1.

Finally, we tested whether altered localization or abundance of Ptch1 protein was observed 

after manipulations of the Notch pathway in the ventral spinal cord. In Notch-On mutants, 

Ptch1 protein staining in and around the primary cilia was notably reduced, fitting with the 

observed increase in Smo presence (Figures 6E-6H’, 7P-7Q and 7S). By contrast, Notch-Off 

mutants showed elevated Ptch1 at the apical membrane and cilia in accordance with the 

reductions in Smo staining (Figures 6I-6J’ and 7R-7S). Together, these in vitro and in vivo 

experiments demonstrate that Notch signaling plays an integral role modulating Ptch1 

localization to gate Smo entry into primary cilia. Through these actions, Notch can regulate 

the downstream activation of the Shh transduction pathway and assignment of NPC fates.

DISCUSSION

It is well established that the dorsoventral identity of NPCs in the spinal cord and other 

regions of the CNS is influenced by the concentration of Shh ligand that they are exposed to 

(Fuccillo et al., 2006; Dessaud et al., 2008; Ribes and Briscoe, 2009). However, Shh 

concentration is only part of the means though which graded signaling responses are 

achieved. Other important factors include: (1) the duration of time over which cells are 

exposed to Shh, (2) the ability of cells to modulate their responsiveness to Shh through 

changes in the expression and/or subcellular distribution of key signal transduction 

components such as Ptch1 and Smo, (3) changes in the expression of proteins that modulate 

Shh-Ptch1 interactions or modify Shh itself, and (4) cross-regulatory interactions between 

Shh-regulated transcription factors that assign specific cell fates (Dessaud et al., 2008; Ribes 

and Briscoe, 2009; Briscoe and Therond, 2013). Our studies show that Notch signaling plays 

a crucial role in these first two processes, serving to sustain NPCs in an undifferentiated, 

Shh-responsive state while also influencing the ciliary trafficking of Ptch1 and Smo and 

downstream activation of Gli transcription factors (Figure 8). Together, these data provide 

important insights into the mechanisms through which NPCs interpret the Shh gradient and 

reveal a novel, and potentially general mechanism by which the Notch and Shh signaling 

pathways collaborate to direct cell fate decisions.

Notch-mediated changes in Shh transduction influence the selection of NPC fates

Our data show that manipulating the Notch pathway modulates the dorsoventral register of 

NPCs, with Notch activation and inactivation respectively increasing or decreasing the 

formation of the ventral-most cell types reflected by alterations in Nkx2.2 and Olig2 

expression and shifts in specific classes of neurons and glia. Importantly, multiple lines of 

evidence indicate that these changes are due to the ability of Notch to modulate how NPCs 

interpret the endogenous Shh signaling gradient rather than more direct effects on cell fate 

determination. First, all changes in NPC fates occurred within the context of Nkx6.1+ 

progenitors, which reflect the limit of endogenous Shh signaling in spinal cord (Briscoe et 

al., 2000). Second, Notch manipulation in the intermediate spinal cord impacted NPC 

maintenance, without any change in dorsoventral patterning or shift in glial cell types. Third, 

in fibroblasts, Notch activation and inactivation were unable to modulate Smo trafficking to 
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primary cilia or Gli transcriptional activity without the coadministration of Shh ligand. 

Collectively these data indicate that in the context of tissue patterning, Notch plays a 

supporting role tuning the response of cells to Shh present in the developing embryo or 

culture media.

It has long been appreciated that the influences of Shh on neural fate selection are generally 

restricted to dividing cells (Ericson et al., 1996). Recent studies have provided molecular 

explanations for this relationship showing that most Shh/Gli-regulated genes are coregulated 

by SoxB1 transcription factors such as Sox2 that are broadly expressed by NPCs 

(Oosterveen et al., 2012; Peterson et al., 2012; Oosterveen et al., 2013). Some of the positive 

effects of Notch on Shh signaling could thus be accounted for by its ability to elevate SoxB1 

levels as it maintains NPCs in an undifferentiated state. However, our data indicate that 

Notch can also act at a more proximal level, regulating the ciliary localization of at least two 

key components of the Shh transduction pathway, Ptch1 and Smo. Ptch1 appears to be the 

most directly impacted by Notch, as the addition of DAPT alone to fibroblasts promotes 

Ptch1 accumulation within primary cilia (Figure 7F-7G and 7J), and Ptch1 is known to block 

Smo entry and downstream signaling events (Rohatgi et al., 2007). Moreover, DAPT was 

unable to reduce Smo accumulation within cilia in the absence of Ptch1 or in the presence of 

Pur and SAG, small molecules that bypass Ptch1 function (Figures 7A-7E and 7K-7O). 

These observations in fibroblasts also hold true for spinal cord NPCs, as Rbpj deletion 

increased Ptch1 protein in and around primary cilia whereas NICD misexpression reduced it, 

with corresponding changes in ciliary Smo and ultimately expression of specific NPC fate 

determinants (Figures 7P-7S).

Notch as a modulator of ciliary trafficking

How might Notch signaling alter Ptch1 and Smo trafficking? In epidermal cells, Notch 

receptors and processing enzymes are located in and adjacent to primary cilia, and ciliary 

transport is required for Notch pathway activity (Ezratty et al., 2011). Based on this 

proximity, Notch signaling components could conceivably impact the interactions of ciliary 

transport proteins with Shh signaling components. However, our results point to Notch 

acting through a transcriptional mechanism. First, changes in NPC fates and Gli 

transcriptional activity were seen with either removal of Rbpj function or increased 

expression of NICD, components whose main sites of action are known to be in the nucleus. 

Second, the Shh-potentiating activities seen with NICD misexpression were partially 

recapitulated by the forced expression of Hes1, one of the best-known downstream 

transcriptional effectors of the Notch pathway. Third, the effects of DAPT administration on 

Ptch1 and Smo trafficking were not immediate, but rather required at least 8 hr of exposure- 

more than sufficient time for a transcriptionally mediated response. Lastly, DAPT effects on 

Smo trafficking were blocked by the addition of the transcriptional inhibitor α-amanitin. 

Together, these results lead us to propose that Notch and Hes genes modulate Shh signaling 

by regulating the expression of genes whose products impact the trafficking of Ptch1, Smo, 

and potentially other Shh signaling components to primary cilia, designated as ‘X’ for direct 

Notch effectors and ‘Y’ for Hes-suppressed effectors (Figure 8).
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While a great deal is known about the transcriptional control of Ptch1 in response to Shh 

pathway activation, relatively little is known about the regulation of Ptch1 protein 

trafficking. Some insights into this process have been recently made by observations that 

Ptch1 exit from primary cilia requires the function of the intraflagellar transport (IFT) 

protein Ift25 (Keady et al., 2012), and endocytic turnover mediated by the ubiquitin E3 

ligases Smurf1 and Smurf2 (Yue et al., 2014). Loss of these components results in Ptch1 

accumulation within primary cilia and reduced cellular responses to Shh (Keady et al., 2012; 

Yue et al., 2014), reminiscent of the effects seen with the loss of Notch signaling. However, 

none of these genes were changed by our Notch manipulations (J.H.K. and B.G.N, 

unpublished data). A better understanding of the downstream targets of Notch and Hes1 

should yield important new insights into how the localization and function of Ptch1 and 

other Shh signaling components may be controlled.

A role for Notch gating responses to other developmental signals dependent on cilia?

The primary cilium is a nonmotile organelle that is present on almost all vertebrate cells 

(Pazour and Witman, 2003). Although primary cilia were first observed over a century ago 

(Zimmermann, 1898), their function as an antenna-like organelle that allows cells to detect 

extracellular environmental stimuli and modulate an appropriate intracellular response has 

only recently been realized. In addition to Shh signaling, primary cilia are thought to be 

essential for Hippo, mTor, Notch, Pdgfrα, and Wnt signaling (Schneider et al., 2005; 

Boehlke et al., 2010; Ezratty et al., 2011; Habbig et al., 2011; Lancaster et al., 2011). The 

importance of primary cilia is perhaps best illustrated through ciliopathies, a group of 

genetic disorders that are due to defects in the generation or function of cilia, that 

collectively affect nearly every major organ in the human body (Novarino et al., 2011). As 

no protein synthesis occurs within the cilium, the formation of the cilium and the 

accumulation of signaling pathway components within the cilium are entirely dependent on 

the IFT system to shuttle proteins to their proper areas (Pedersen and Rosenbaum, 2008).

While our study focused on the impact of Notch on Shh signaling by altering the localization 

of Ptch1 and Smo, the mechanisms used to achieve this result are likely to have a broader 

impact on other signaling pathways that depend upon the IFT system. Consistent with this 

hypothesis we have carried out a series of preliminary expression profiling experiments in 

NIH-3T3 cells which indicate that DAPT addition reduces the expression of several proteins 

known to be associated with primary cilia (Ishikawa et al., 2012) including components of 

the Pdgfrα and Wnt signaling pathways, and various extracellular matrix proteins (J.H.K. 

and B.G.N., unpublished data). In this regard, the mechanism through which Notch gates the 

responsiveness of cells to Shh might signify a more general role for Notch modulating 

ciliary transport that could impact multiple signaling pathways involved in both 

development and disease.

EXPERIMENTAL PROCEDURES

Animal preparation and tissue analysis

Olig2Cre and Dbx1Cre mice were generated as previously described (Bielle et al., 2005; 

Dessaud et al., 2007). Cre mice were crossed with R26RGFP transgenic reporter mice 
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(B6;129-Gt(ROSA)26Sortm2Sho/J; Jackson Labs Stock #004077) (Mao et al., 2001); 

R26RNICD-nGFP transgenic floxed mice (Gt(ROSA)26Sortm1(Notch1)Dam/J; Jackson Labs 

Stock #008159) (Murtaugh et al., 2003), or RbpjCKO mice (Han et al., 2002). Olig2−/−, 

Nkx2.2−/− and Pax6Sey/Sey mutant mice were generated as previously described (Novitch et 

al., 2001; Rousso et al., 2012). All mice were maintained and tissue collected in accordance 

with guidelines set forth by the UCLA Institutional Animal Care and Use Committee. Chick 

neural plate explants were generated as previously described (Dessaud et al., 2007). All 

spinal cord tissues were fixed, cryoprotected, sectioned, and processed for 

immunohistochemistry or in situ hybridization as previously described (Novitch et al., 2001; 

Gaber et al., 2013). Antibodies and probes used are listed in Table S1 and the Supplemental 

Experimental Procedures.

Cell Culture and primary cilia analysis

NIH-3T3 fibroblasts (CRL-1658) and C2C12 myoblasts (CRL-1772) were purchased from 

ATCC. Shh-LIGHT2 cells were used as previously described (Taipale et al., 2000). 

Ptch1−/− and Ptch1−/−; Ptch1-YFP MEFs were generated as previously described (Rohatgi 

et al., 2007; Rohatgi et al., 2009). Primitive human neuroepithelial progenitors were 

generated from embryonic stem cells as previously described (Hu et al., 2009). For cilia 

analysis in fibroblasts, cells were plated onto glass coverslips, grown to 80-100% 

confluency in DMEM containing 10% bovine calf serum (BCS) and then changed to low 

serum media (0.5% BCS) at the beginning of experiments. Cells were fixed in 4% 

paraformaldehyde, incubated with indicated primary and secondary antibodies, and mounted 

in Prolong Gold (Invitrogen). See also Supplemental Experimental Procedures.

Statistical Analyses

Unless otherwise stated, cell counts, luciferase assays, and qPCR analyses are presented as 

mean values ± SEM. For Figures 1Q, 2M-2N, 3M-3N, 5I, 6K-L, 7S, S3J-S3K, S4G, S4AF-

S4AI, S7Q, S7R, and S8I experimental conditions were compared to the control and a one-

way analysis of variance (ANOVA) with a Dunnett's post-hoc test was performed. For the 

data shown in Figures 4G-4H, 5C, 5L, 5N, S5D, S5I, S5J-S5K, and S8H-S8J unpaired, two-

tailed t-test were performed. All ciliary Smo fluorescence data sets did not pass the Shapiro-

Wilk normality test. Thus, for all ciliary Smo analyses between two groups (Figures 5M, 7E, 

7J, S8B, S8D, S8F) two-tailed nonparametric Mann-Whitney tests were performed. For 

analyses between three or more groups (Figures 5J-5K, 7O, S5A, S6D, S6H, S6L) 

nonparametric Kruskal-Wallis tests were used along with Dunnett's post-hoc tests. All 

statistical analyses were calculated using Graphpad Prism 6 software. Significance was 

assumed when p < 0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Manipulation of Notch signaling alters Olig2 expression
(A) Schematic of Olig2Cre-mediated manipulations used to activate or inactivate Notch 

signaling. Notch-On indicates NICD misexpression and Notch-Off indicates Rbpj deletion. 

Control conditions include crosses to mice carrying a R26RGFP reporter.

(B-F) At E10.5-E11.5, Olig2 is initially expressed by MN progenitors and later 

oligodendrocyte progenitors.

(G-P) In Notch-On mice, Olig2+ cells decline from E11.5 onward. In Notch-Off mice, 

Olig2+ cells increase. Scale bars = 100 μm.

(Q) Quantification of Olig2+ cells per spinal cord half at the indicated time points. Plots 

show the mean ± SEM from multiple sections collected from 4-25 embryos from each 

group. *p < 0.05, **p < 0.01, ***p < 0.001

See also Figures S1 and S2.
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Figure 2. Changes in Notch signaling alter the dorsoventral identities of ventral spinal cord 
progenitors
(A-D) In E11.5 control spinal cords, ventral progenitors are distinguishable by coexpression 

of Nkx6.1 and Nkx2.2 (p3), Nkx6.1 and Olig2 (pMN), and Nkx6.1 and Irx3 (p2).

(E-H) More Nkx6.1+ progenitors are present in Notch-On mutants. Within this population, 

the percentage expressing Nkx2.2 increased while the percentage expressing Olig2 

decreased.

(I-L) Notch-Off mutants contain a reduced percentage of Nkx6.1+ progenitors expressing 

Nkx2.2 and reciprocal increase in Olig2. Scale bars = 50 μm.

(M-N) Quantification of the total number of Nkx6.1+ progenitors present and their 

subdivision into p3, pMN, and p2. Plots show the mean ± SEM from multiple sections 

collected from 7-9 embryos for each group. *p < 0.05, **p < 0.01, ***p < 0.001.

See also Figures S2 and S4.
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Figure 3. Manipulation of Notch signaling alters glial fates
(A-D) In E18.5 control spinal cords, Olig2Cre; R26RGFP-labeled descendants include 

Sox10+/PDGFRα+ oligodendrocyte precursors (OLPs), BLBP+/NF1a+ pVA3 astrocyte 

progenitors.

(E-H) Notch activation suppresses OLP formation and expands pVA3 progenitors.

(I-L) Notch inactivation expands OLP production at the expense of pVA3 progenitors. Scale 

bars = 100 μm.

(M-N) Quantification of total OLP (GFP+/Sox10+) and pVA3 astrocyte progenitors (GFP+/

BLBP+) per spinal cord half. pVA3 counts are divided based on localization within the 

ventricular zone (VZ), marginal zone (MZ), or white matter (WM). Plots show the mean ± 

SEM from multiple sections collected from 3-7 embryos for each group. *p < 0.05, **p < 

0.01, ***p < 0.001.

(O) Summary of the role of Notch signaling in directing glial fate choices. See also Figures 

S3 and S4.
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Figure 4. Inhibition of Notch signaling reduces Gli activity and assignment of the p3 fate
(A-B, D-E) Representative images of HH stage 10 chick intermediate neural plate [i] 

explants cultured for 24 hr in 1 or 4 nM Shh ± 25 μM DAPT. Explants were stained with 

Nkx2.2 and Olig2 antibodies to identify p3 and pMN cells. Insets show DAPT addition 

increases Tuj1+ neurons, as expected for a Notch inhibitor.

(C, F) Quantification of p3 and pMN cells present in [i] explants cultured in either 1 or 4 

nM Shh and varying amounts of DAPT (0-50 μM). n ≥ 5 explants per condition and plots 

display cells/explant ± SEM.

(G) Gli activity measurements of [i] explants isolated from chick embryos electroporated 

with a GBS-Luciferase reporter construct and cultured with or without 4 nM Shh ± 25 μM 

DAPT. n ≥ 5 explants per condition were collected; plots display relative GBS-Luciferase 

activity (Relative Light Units) ± SEM.

(H) Gli activity measurements in [vf] explants isolated from embryos electroporated with 

the GBS-luciferase reporter and cultured in the presence or absence of 25 μM DAPT. n ≥ 5 

explants per condition; relative GBS-Luciferase activity ± SEM. *p < 0.05, **p < 0.01, ***p 

< 0.001.
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Figure 5. Notch signaling regulates the ciliary location of Smo and Shh pathway activity in 
fibroblasts
(A-B) GBS-luciferase reporter activity in 3T3 Shh-LIGHT2 cells cultured in either Shh 

(0-100 nM) or a range of DAPT (0-50 μM) in the presence of a single concentration of Shh 

(50 nM). Points represent mean GBS-luciferase activity (Relative Light Units) ± SEM from 

4-6 independent samples. Inset shows immunoblotting for cleaved NICD and Actin.

(C) qPCR analysis of Gli1, Ptch1, and Smo expression in NIH-3T3 cells cultured in Shh (50 

nM) ± DAPT (18.75 μM). Plot shows mean Gapdh-normalized gene expression levels ± 

SEM from 6 samples. Not significant (NS), p > 0.05; ***p < 0.001.

(D-H) Changes in the localization of Smo to primary cilia of NIH-3T3 cells treated with Shh 

and Notch inhibitors (DAPT, 18.75 μM and SAHM1, 20 μM) or a γ-secretase inhibitor that 

spares Notch function (JLK6, 20 μM). Cells were immunostained for αTubulin (αTub) 

(green), Smo (red), and Hoechst (blue, nuclei). Arrows denote cilia in the insets where Smo 

and αTub channels are offset to show colocalization. Low and High mag scale bars = 10 and 

1 μm.

(I) qPCR analysis of Hes1 in NIH-3T3 cells exposed to DAPT (18.75 μM), SAHM1 (20 

μM), or JLK6 (20 μM). Plots show mean Gapdh-normalized mRNA expression levels 

relative to unstimulated controls ± SEM from 3-5 samples. *p < 0.05, **p < 0.01, ***p < 

0.001.

(J-K) Box and whisker plots of ciliary Smo fluorescence in NIH-3T3 cells treated as 

indicated. The number of cilia analyzed in each group is indicated in black. The percentage 

of cilia with Smo is indicated in red. NS, p > 0.05, ***p < 0.001.

(L, N) qPCR analysis of Hes1 and Gli1 in NIH-3T3 cells transiently transfected with pCIG 

or pCIG-NICD vectors and then cultured in the presence or absence of Shh (50 nM). Plots 
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show mean Gapdh-normalized expression levels relative to pCIG controls ± SEM from 5-6 

samples for each condition.

(M) Box and whisker plots of the ciliary Smo fluorescence in transfected cells. NS, p > 0.05, 

*p < 0.05, ***p < 0.001.

See also Figures S5 and S6.
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Figure 6. Notch signaling influences the ciliary accumulation of Smo in ventral spinal cord NPCs
(A-D) Analysis of Smo+ primary cilia present on ventral progenitors in E10.5 embryos. 

Arrows in (D) indicate regions of Cre recombination. In Notch-Off embryos, ciliary Smo is 

absent in recombined regions. Low (A, C) and high (B, D) mag scale bars = 10 μm and 2 

μm.

(E-J) Analysis of primary cilia in E11.5 embryos. Brackets illustrate the dorsoventral extent 

of Smo+ primary cilia, a region where Nkx2.2+ p3 cells are present. Scale bars = 20 μm.

(K) Quantification of Smo+ primary cilia at E10.5 counted from the GFP- floor plate and 

GFP+ ventral progenitors. Plots show the mean percentage of Smo+ primary cilia ± SEM 

from multiple sections collected from 3-4 embryos from each group. NS, p > 0.05 and *p < 

0.05.

(L) Quantification of the dorsoventral limits of Smo+ primary cilia at E11.5. Plots show 

mean lengths of the ventricular zone lined with Smo+ cilia ± SEM. All measured lengths 

were normalized to littermate controls. Analysis was conducted on multiple sections 

collected from 3-9 embryos from each experimental group. *p < 0.05, **p < 0.01, ***p < 

0.001.

See also Figure S7.
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Figure 7. Notch signaling regulates Ptch1 presence in and around primary cilia
(A-D) Analysis of Smo enrichment in primary cilia of NIH-3T3 cells treated with Pur (5 

μM) or SAG (1 μM) ± DAPT (18.75 μM). Arrows denote cilia shown in the insets, in which 

Smo and αTub are offset to show colocalization. Low and high mag scale bars = 10 μm and 

1 μm.

(E) Box and whisker plots of ciliary Smo fluorescence in NIH-3T3 cells treated with Pur or 

SAG ± DAPT. The black numbers indicate the number of cilia analyzed. The red numbers 

indicate the percentage of cilia with Smo. NS, p > 0.05.

(F-I) Ciliary enrichment of Ptch1 in Ptch1−/−;Ptch1-YFP MEFs after exposure to DAPT 

(18.75 μM) with or without Shh (50 nM). Low and high mag scale bars = 10 μm and 1 μm.

(J) Box and whisker plots of ciliary Ptch1 fluorescence in Ptch1−/−;Ptch1-YFP MEFs. ***p 

< 0.001.

(K-N) Analysis of Smo localization in Ptch1−/− MEFs treated with or without Shh (50 nM) 

± DAPT (18.75 μM). Arrows denote cilia shown in the insets, in which Smo and αTub 

channels are offset to show colocalization. Scale bars = 10 μm and 1 μm (insets).

(O) Box and whisker plots of ciliary Smo fluorescence in Ptch1−/− MEFs treated with or 

without Shh (50 nM) ± DAPT (18.75 μM). NS, p > 0.05.

(P-R) Apical Ptch1 staining in the ventral spinal cord of E11.5 embryos. The pMN and p3 

labels were determined by serial section staining for Olig2 and Nkx2.2 (not shown). Insets 

show Ptch1 presence in Arl13b-stained primary cilia. Scale bars = 20 μm and 1 μm (insets).

(S) Scatterplot of the mean intensity of apical Ptch1 staining in a 250 μm2 area ± SEM. Each 

point represents the mean intensity from multiple sections collected from single embryo. 
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Each group is comprised of data from 6-12 embryos. The intensity of Ptch1 was normalized 

to littermate controls. *p < 0.05, **p < 0.01.

See also Figure S8.
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Figure 8. Models for interactions between Notch and Shh signaling
Models depicting how Notch signaling modulates cellular responses to Shh by regulating the 

movement of Ptch1 to the primary cilia.

(A, D) In the absence of Shh, Ptch1 is present within and adjacent to primary cilia. Shh 

ligand binds to Ptch1, permitting Smo entry into the cilia where it stimulates Gli 

transcriptional activities. Direct downstream effectors of Notch signaling that promote Ptch1 

clearance from primary cilia (X) and indirect effectors suppressed by Hes genes (Y) that 

increase Ptch1 ciliary accumulation are depicted.

(B, E) Notch activation via the ectopic expression of NICD reduces Ptch1 presence within 

primary cilia facilitating Smo entry and activation of Gli proteins.

(C, F) Notch inhibition, via the addition of DAPT or removal of Rbpj, elevates the presence 

of Ptch1 within primary cilia. Smo entry is impeded and Gli activities correspondingly 

reduced.
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